Research in Progress with Sherri Rose: New and Ongoing Projects at the Interface of Machine Learning for Health Policy

Research in Progress with Sherri Rose: New and Ongoing Projects at the Interface of Machine Learning for Health Policy

Friday, December 3, 2021
12:00 PM - 1:00 PM
(Pacific)
Register in advance for this meeting:
After registering, you will receive a confirmation email containing information about joining the meeting.

Sherri Rose, PhD  is an Associate Professor of Health Policy at the Stanford School of Medicine and Co-Director of the Health Policy Data Science Lab. Her research is centered on developing and integrating innovative statistical machine learning approaches to improve human health and health equity. Within health policy, Dr. Rose works on risk adjustment, ethical algorithms in health care, comparative effectiveness research, and health program evaluation. She has published interdisciplinary projects across varied outlets, including BiometricsJournal of the American Statistical AssociationJournal of Health EconomicsHealth Affairs, and New England Journal of Medicine. In 2011, Dr. Rose coauthored the first book on machine learning for causal inference, with a sequel text released in 2018. She has been Co-Editor-in-Chief of the journal Biostatistics since 2019.

Dr. Rose has been honored with an NIH Director's New Innovator Award, the ISPOR Bernie J. O'Brien New Investigator Award, and multiple mid-career awards, including the Gertrude M. Cox Award and the Mortimer Spiegelman Award, the nation’s highest honor in biostatistics, given to a statistician younger than 40 who has made the most significant contributions to public health statistics. She was named a Fellow of the American Statistical Association in 2020 and received the 2021 Mortimer Spiegelman Award, which recognizes the statistician under age 40 who has made the most significant contributions to public health statistics. Her research has been featured in The New York Times, USA Today, and The Boston Globe. 

Title: New and Ongoing Projects at the Interface of Machine Learning for Health Policy